Superposition Modulo Linear Arithmetic SUP(LA)

نویسندگان

  • Ernst Althaus
  • Evgeny Kruglov
  • Christoph Weidenbach
چکیده

The hierarchical superposition based theorem proving calculus of Bachmair, Ganzinger, and Waldmann enables the hierarchic combination of a theory with full first-order logic. If a clause set of the combination enjoys a sufficient completeness criterion, the calculus is even complete. We instantiate the calculus for the theory of linear arithmetic. In particular, we develop new effective versions for the standard superposition redundancy criteria taking the linear arithmetic theory into account. The resulting calculus is implemented in SPASS(LA) and extends the state of the art in proving properties of first-order formulas over linear arithmetic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superposition modulo theory

This thesis is about the Hierarchic Superposition calculus SUP(T) and its application to reasoning in hierarchic combinations FOL(T) of the free first-order logic FOL with a background theory T where the hierarchic calculus is refutationally complete or serves as a decision procedure. Particular hierarchic combinations covered in the thesis are the combinations of FOL and linear and non-linear ...

متن کامل

Superposition Modulo Non-linear Arithmetic

The first-order theory over non-linear arithmetic including transcendental functions (NLA) is undecidable. Nevertheless, in this paper we show that a particular combination with superposition leads to a sound and complete calculus that is useful in practice. We follow basically the ideas of the SUP(LA) combination, but have to take care of undecidability, resulting in “unknown” answers by the N...

متن کامل

Superposition as a Decision Procedure for Timed Automata

The success of superposition-based theorem proving in first-order logic relies in particular on the fact that the superposition calculus is able to decide well-known classical decidable fragments of first-order logic and has been successful in identifying new decidable classes. In this paper, we extend this story to the hierarchic combination of linear arithmetic and first-order superposition. ...

متن کامل

Combinable Extensions of Abelian Groups

The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method à la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We ...

متن کامل

Modular Termination and Combinability for Superposition Modulo Counter Arithmetic

Modularity is a highly desirable property in the development of satisfiability procedures. In this paper we are interested in using a dedicated superposition calculus to develop satisfiability procedures for (unions of) theories sharing counter arithmetic. In the first place, we are concerned with the termination of this calculus for theories representing data structures and their extensions. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009